

New AP2700 v3.30 control software

- USB connectivity to PC
- Native Windows Vista support
- Improved user profile management

2700 Series

Dual Domain Audio Analyzer

High-Performance Testing with the Audio Precision 2700 Series

The 2700 Series is the flagship model of Audio Precision's award-winning PC-controlled audio analyzers, long the recognized worldwide standard for the design and test of audio equipment. The full-featured SYS-2722 provides the unmatched distortion and noise performance required to test the latest advances in converter technology, combined with 192k digital input and output capabilities.

The 2722's true dual domain architecture enables uncompromised measurement of both analog and digital signals: the hardware generator and analyzer specifications surpass those of any digital configuration, while digital analysis techniques offer a wide array of precise, high-speed measurement techniques for either domain. Cross-domain work can be accomplished using the best of both worlds.

Unparalleled Precision

Low Distortion

Analog system 1 kHz THD+N, 20 kHz BW \leq -112 dB (Typical worst case harmonic < -130 dB)

Digital generator distortion/spurious products $\leq -160 \text{ dB}$

High Bandwidth

Analog signal generation to 204 kHz

Analog measurements to 500 kHz

Analysis by FFTs and Multitone to 120 kHz

Low Noise

Analog analyzer 22 Hz–22 kHz BW \leq –118 dBu Analog analyzer A-weighted \leq –124 dBu

Flat Response

Analog system 20 Hz-20 kHz Typically \pm **0.003 dB**

Low Crosstalk

Analog inputs 20 Hz-20 kHz \leq -140 dB Analog output 20 Hz-20 kHz \leq -120 dB

Low Jitter

700 Hz-100 kHz BW \leq 600 ps 50 Hz-100 kHz BW \leq 1.0 ns

FFT Acquisitions

Up to **4 M Samples** (87 s @, 48 kHz F_s)

The 2700 Series

- The unparalleled precision of a dedicated hardware instrument.
- Fast instrument operation and powerful analysis under sophisticated control software.
- Programmatic control for high-speed automation.
- · Serial digital interface testing.
- · Flexible configuration options.
- * A family of auxiliary instruments for specialized testing.
- * AES3, IEC60958 (SPDIF) and PSIA input and output sample rates at 192 kHz.

The 2700 Series. Proven, reliable, high-performance technology from Audio Precision, the industry's preeminent audio test and measurement company.

Accredited calibration to ISO 17025 standard

Every 2700 Series is calibrated before it leaves the factory, so

you know your measurements are accurate and your instrument meets the most stringent Quality System Requirements in the industry.

Audio Precision is accredited by A2LA, the American Association for Laboratory Accreditation, to perform calibrations at our Calibration Lab in Beaverton, Oregon.

2700 Series dual domain model SYS-2722 192k

PC Control and Programmability

AP2700 is the control software for the 2700 Series instruments. Running on the controlling PC, AP2700 is a powerful and sophisticated real-time interface, with hardware and software system modules and functions controlled using settings on virtual panels, and measurement results displayed in virtual meter and graph readings. Both settings and readings can be swept and plotted on X-Y graphs, modified by various algorithms, compared against limits or analyzed by DSP methods.

AP2700 is flexible and configurable, addressing a wide range of uses from benchtop R&D or maintenance engineering to automated production testing.

Test setups, measurement data, automation scripts, graphs and other test components are saved on the PC. These files can be emailed or

the PC. These files can be emailed or exchanged between co-workers at any location to duplicate test setups, review test results or publish reports. Graphs and numerical data can be pasted into spreadsheets, word processors or graphics editors, and can be exported in a number of different formats.

AP2700 supports Microsoft Windows® Vista and Windows XP.

- GPIB versions of each 2700 Series model are available, providing an IEEE-488 interface for compatibility with third-party automated testing instruments.
- The entire testing process can be automated for repeatability and speed by programmatically control-

 You can create, edit and run AP Basic macros without ever leaving the control software.
 The Macro Editor provides complete editing, debugging and syntax help.

Create and edit macros and verify your code using the Step and Trace mode in the Macro Editor.

Charlie Presiden AP7700

- AP Basic works with the control software using ActiveX Automation. The entire command structure is accessible to Microsoft Visual Basic[®], enabling you to integrate your 2700 Series instrument with a wide variety of applications and equipment.
- Learn Mode is a "macro recorder" that provides a fast and convenient way to generate automated test macros, even if you have little programming experience.
- A Dialog Editor provides an easy way to design a custom user interface "front-end" for your automation macros. Drag-and-drop in the Dialog Editor, and the underlying code is written into the Macro Editor script.

Use the Object Browser to easily integrate commands and correct syntax while working in the Macro Editor.

Design professional user interface panels within your macro using the Dialog Editor.

Unparalleled Speed

The 2700 Series offers an array of powerful, time-saving analysis tools to speed your testing procedures.

Multitone Multitone testing techniques can provide response, distortion, noise, crosstalk and phase measurements — all from a single sub-second acquisition. You can address a wide variety of high-speed testing applications by choosing a standard stimulus waveform, or by making your own using the multitone creation utility. In addition to great speed, multitone analysis brings other advantages: a stimulus signal, for example, that is a rich mix of frequencies, levels and phase relationships that more closely resembles program material than conventional single stimulus tones; and the unique ability to measure noise or very low distortion products in the presence of signal.

Fast detection The DSP-implemented Fast RMS Detector speeds sine wave sweeps by making measurements in as little as one cycle of the sine wave. This can provide an improvement in testing speed of an order of magnitude compared to normal RMS detector techniques.

Proprietary Harmonic Distortion Analyzer An FFT-implemented dual-channel Harmonic Distortion Analyzer can simultaneously measure the individual amplitudes of a fundamental frequency and up to four harmonic products, selectable from the 2nd to the 15th harmonic. Sweeps using this analysis tool can rapidly characterize frequency or amplitude dependent distortion mechanisms.

Fast data settling A sophisticated data settling algorithm enables you to optimize the inherent trade-off between testing speed and measurement accuracy in sweep tests. Individual settling parameters are stored for every measurement available in the instrument.

The graph at the top shows a spectrum display of a multitone stimulus. The next graphs are examples of five dual-channel parameters plotted against frequency, all produced from a single multitone stimulus lasting less than one second.

MLS analysis Quasi-anechoic measurements of transducers and acoustic spaces can be performed using MLS (Maximum Length Sequence) signals and analysis to produce impulse, frequency and phase response graphs in less than one second

Hardware and software filters Make noise measurements to virtually any international standard using our extensive collection of weighting and band-limiting filters. Use optional Audio Precision hardware filters (for the Analog Analyzer) or Audio Precision software filters (for the DSP Audio Analyzer); or make your own user-downloadable software filters using the Filter Creation Utility.

Loudspeaker impulse response graph, showing a 6.6 ms delay before the impulse peak.

Digital Interface Capabilities

The 2700 Series offers both AES3 and IEC60958 serial digital interfaces, with fully configurable serial data and clock ports available via the auxiliary PSIA-2722 Programmable Serial Interface Adapter.

All digital input and output capabilities are functional over the full range of sample rates from 8 kHz to beyond 200 kHz.

The Digital Input/Output panel provides complete control and display of serial interface parameters including connector and format selection, sample rate, resolution, pulse amplitude, active data bits, error flags and received jitter amplitude. A Status Bits panel enables you to set and read interface metadata in both professional and consumer formats. Metadata is displayed in both hex and English interpretations.

Test the performance of AES3 or 60958 receivers with sub-standard signals by introducing impairments to the output serial interface signal. Impairments include variable sample rate, pulse amplitude and rise and fall times, the addition of noise, common-mode signals, controllable jitter and a long cable simulation.

Fully characterize a serial digital bit stream including waveforms, eye patterns, spectrums and histograms, as shown by these nine graphs.

Digital Input/Output panel

Digital Inputs and Outputs

Choose balanced XLR for the AES3 format, unbalanced BNC for the 60958 format, or a Toslink[®] connector for optical output or input to 192k. The second connectors can be used to switch between cables or in dual-connector mode. Rearpanel jacks provide reference, clock and trigger inputs and outputs.

Rear panel connections

Selectively inject various impairments into the digital signal to test device performance.

Use the Digital Interface Analyzer tool to measure and display the interface signal or jitter waveform and spectrum, histograms for a number of interface measurements or to generate an eye pattern. Add jitter of various types and amplitudes to the generated bitstream and measure the effect on the receiver and the resulting audio signal.

Complete Status Bit metadata setting and display for either consumer or professional format.

- An Eye Pattern is a triggered oscilloscope view of the minimum pulse stream amplitude vs. time, computed over thousands of data cells. The eye opening provides a quick check of signal amplitude, signal-to-noise ratio, rise and fall times and jitter.
- Histograms display the probability distribution
 of pulse stream parameters like timing (jitter),
 amplitude, sample rate and bit width. The
 interface signal and the jitter waveform can be
 viewed either in the time domain (oscilloscope
 view) or the frequency domain (FFT spectrum).

2700 Series Specifications Summary

ANALOG SIGNAL OUT	
Low Distortion Sine Warrequency Range	
requency Accuracy	TO THE LOT IN IL.
High-accuracy mode	±0.03%.
Fast mode	
requency Resolution	
High-accuracy mode	
	0.025 Hz, 10 Hz-204.75 Hz, 0.25 Hz, 205 Hz-2.0475 kHz 2.5 Hz, 2.05 kHz-20.475 kHz, 25 Hz, 20.5 kHz-204 kHz.
Implitude Range Balanced	<10 µV-26.66 Vrms [+30.7 dBu].
	<10 µV–13.33 Vrms [+24.7 dBu].
	±0.7% [±0.06 dB] at 1 kHz.
	0.003 dB or 0.05 μ Vrms, whichever is larger.
Flatness (1 kHz ref) 0 Hz=20 kHz	±0.008 dB (typically <0.003 dB).
20 kHz-50 kHz	±0.03 dB.
50 kHz–120 kHz	±0.10 dB.
Residual THD+N	+0.2 / -0.3 ub.
	$\leq\!\!(0.00025\%$ + 1.0 $\mu V)$ [–112 dB], 22 kHz BW (valid only
	for analyzer inputs ≤8.5 Vrms).
20 Hz–20 kHz	\leq (0.0003% + 1.0 μ V) [-110.5 dB], 22 kHz BW, \leq (0.0005% + 2.0 μ V) [-106 dB], 80 kHz BW, \leq (0.0010% ·
	≤(0.0005% + 2.0 µV) [-106 dB], 80 kHz BW, ≤(0.0010% - 5.0 µV) [-100 dB], 500 kHz BW.
10 Hz–100 kHz	≤(0.0040% + 5.0 µV) [–88 dB], 500 kHz BW.
	ion Test Signals with option "IMD"
MPTE (or DIN)	or engineer man option mile
	40, 50, 60, 70, 100, 125, 250, or 500 Hz; all ±1.5%.
HF Tone Range	
Mix Ratio	4:1 or 1:1 (LF:HF).
CCIF and DFD	00.400.400.440.000.000.000
	80, 100, 120, 140, 200, 250, 500 or 1 kHz; all ±1.5%.
Center Frequency DIM (or TIM)	4.J NI IZ=ZUU KTIZ.
	3.15 kHz (DIM-30 and DIM-100),
	2.96 kHz (DIM-B); both ±1%.
Sinewave Frequency	15 kHz (DIM-30 and DIM-100), 14 kHz (DIM-B).
Special Purpose Signal	s with option "BUR"
Sine Burst	
requency Range	20 Hz–100 kHz.
Square Wave	20 H= 20 kH=
Frequency Range Noise Signals	∠U Π∠-∠U KΠΖ.
	Bandwidth limited 10 Hz–23 kHz.
	Bandwidth limited 20 Hz–200 kHz.
	Approximately 1/3-octave (2-pole) filtered pink noise,
	continuously tunable from 20 Hz-100 kHz.
	True random or pseudo-random.
rseudo-Kandom Interval .	Typically 262 ms (synchronized to the analyzer 4/s reading rate).
/A GENERATED ANAL	OG SIGNALS
Common Specification	S
Sample Rate	
	fixed at 65.536 ks/s or 131.072 ks/s.
Other signals	8 ks/s-108 ks/s variable, or fixed at 65.536 ks/s or 131.07 ks/s.
Frequency Accuracy	±0.0002% [2 PPM] internal reference, lockable to
	external reference.
D/A Resolution	24-bit sigma-delta.
'SINE (D/A)" Signal Far	nily
	10 Hz-30 kHz (65.536 ks/s), or
	10 Hz-60 kHz (131.072 ks/s).
Flatness (1 kHz ref)	204 15
20 Hz–20 kHz	
10 Hz-30 kHz	
THD+N (20Hz-20kHz)	±0.10 dB (typically –0.5 dB at 60 kHz).
30 kHz range	0.0007% [-103 dB].
60 kHz range	
	0 dB to -100 dB, usable to -138 dB.
Shaped Burst Interval	
'IMD (D/A)" Signal Fam	<u> </u>
SMPTE/DIN Test Signa	
LF Ione	
LF Tone	**
HF Tone CCIF/DFD Test Signal	
HF Tone	80 Hz–2 kHz.
HF Tone CCIF/DFD Test Signal	
HF Tone	4.50 kHz to >50 kHz.
HF Tone	

Other Signals	
	e Waveforms ("Arb Wfm")
	Determined by the associated file specified in the panel
Maximum Length Sequ	drop-down box.
Sequences	
Special Signals	
Polarity	Sum of two sine waves phased for reinforcement with normal polarity.
Pass Thru	Passes the embedded audio signal from the rear panel
	Reference Input. Ratio of reference rate to output Sample
Squarewave	Rate may not exceed 8:1.
Frequency Range	20 Hz-20.0 kHz.
Noise Signal	
Pseudo-random white	
ANALOG OUTPUT CHA	ARACTERISTICS
	Selectable balanced, unbalanced, or CMTST
Carran Invandance	(common mode test).
Source Impedances Balanced or CMTST	$40~\Omega~(\pm 1~\Omega)$, $150~\Omega~(\pm 1.5~\Omega)$, or $600~\Omega~(\pm 3~\Omega)$.
	20 Ω (±1 Ω) or 600 Ω (±3 Ω).
Max Output Power into 600	
	+30.1 dBm (Rs = 40 Ω).
Unbalanced Output Related Crosstalk	+24.4 dBm (Rs = 20 Ω).
	≤–120 dB or 5 µV, whichever is greater.
	≤–106 dB or 10 µV, whichever is greater.
ANALOG ANALYZER (6	except SYS-2720)
Analog Input Character	
	40 mV-160 V in 6.02 dB steps. 230 Vpk, 160 Vrms (dc to 20 kHz), overload protected in
waximum Rateu input	all ranges.
Input Impedance	·
	200 kΩ / 95 pF (differential).
Unbalanced	100 k Ω / 185 pF. Selectable 600 Ω or 300 Ω , each ±1%, 1 Watt [+30 dBm]
Terrimations	maximum power.
Level Meter Related	
Measurement Range	5 mV–160 V for specified accuracy and flatness, usable to <100 μ V.
Accuracy (1 kHz)	
Flatness (1 kHz ref)	
20 Hz–20 kHz	±0.008 dB (typically <0.003 dB).
20 Hz–20 kHz 15 Hz–50 kHz	±0.03 dB.
20 Hz–20 kHz 15 Hz–50 kHz 10 Hz–120 kHz	±0.03 dB. ±0.10 dB.
20 Hz-20 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed
20 Hz–20 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz.
20 Hz-20 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM].
20 Hz-20 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz.
20 Hz-20 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 10 Hz-120 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy Accuracy	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 10 Hz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 10 Hz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy Accuracy	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 20 kHz-50 kHz 20 kHz-50 kHz Wideband Amplitude/N	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 110 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz Wideband Amplitude/N Measurement Range	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. oise Function <1 µV-160 Vrms.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-60 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz)	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. oise Function <1 µV-160 Vrms.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 110 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz Wideband Amplitude/N Measurement Range	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±1 deg. ±2 deg. loise Function <1 μV-160 Vrms. ±1.0% [±0.09 dB].
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref)	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. loise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.02 dB.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 20 kHz-20 kHz Wideband Amplitude/N Measurement Range Accuracy 11 Hz-50 kHz 12 kHz-50 kHz 13 Hz-50 kHz 15 KHz-50 kHz 16 KHz-120 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 0ise Function <1 μV-160 Vrms. ±1.0% [±0.09 dB]. ±0.02 dB. ±0.05 dB. ±0.05 dB.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-20 kHz 120 kHz-120 kHz	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. oise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.02 dB. ±0.05 dB.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-50 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-50 kHz 15 Hz-50 kHz 20 kHz-120 kHz 120 kHz-120 kHz 120 kHz-120 kHz Bandwidth Limiting Filters	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. loise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.02 dB. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz).
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 50 kHz-20 kHz 15 Hz-20 kHz 15 kHz-20 kHz 15 kHz-20 kHz 120 kHz-20 kHz 120 kHz-20 kHz 120 kHz-200 kHz Bandwidth Limiting Filters LF -3 dB	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 10 ise Function <1 μV-160 V/ms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <<10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole),
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-50 kHz 15 kHz-20 kHz 18 kHz-20 kHz 18 andwidth Limiting Filters LF -3 dB HF -3 dB	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 0ise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <<10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 1120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 20 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-50 kHz 50 kHz-120 kHz 150 kHz-120 kHz 150 kHz-120 kHz Bandwidth Limiting Filters LF -3 dB	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. loise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 5500 kHz. ±5% (3-pole), or >500 kHz.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 20 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 kHz-20 kHz 50 kHz-20 kHz 15 kHz-20 kHz 16 kHz-120 kHz 17 kHz-10 kHz 18 andwidth Limiting Filters LF -3 dB HF -3 dB	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±1 deg. ±2 deg. 11 deg. ±2 deg. 12 deg. 13 (Hz-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. ±0.05 dB. ±0.15 dB. ±0.15 dB. ±0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz).
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-50 kHz 15 kHz-120 kHz 15 kHz-120 kHz 120 kHz-200 kHz Bandwidth Limiting Filters LF -3 dB HF -3 dB Optional Filters Detection	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits +0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. loise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <<10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz. up to 7.
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-20 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 kHz-50 kHz 50 kHz-120 kHz 120 kHz-20 kHz 120 kHz-20 kHz 130 kHz-30 kHz Bandwidth Limiting Filters LF -3 dB Optional Filters Detection Residual Noise	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. loise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. ±5% (3-pole), or >500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading).
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 50 kHz-20 kHz 50 kHz-20 kHz 50 kHz-20 kHz 515 Hz-50 kHz 50 kHz-120 kHz 120 kHz-20 kHz 120 kHz-30 kHz 18 Hz-3 dB HF -3 dB Optional Filters Detection Residual Noise 22 Hz-22 kHz BW	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits +0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 10ise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. up to 7. RMS □ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading). ≤1.0 µV [-117.8 dBu].
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-20 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 kHz-50 kHz 50 kHz-120 kHz 120 kHz-20 kHz 120 kHz-20 kHz 130 kHz-30 kHz Bandwidth Limiting Filters LF -3 dB Optional Filters Detection Residual Noise	±0.03 dB. ±0.10 dB. +0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 0ise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. ±5% (3-pole), or >500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading). ≤1.0 µV [-117.8 dBu]. <10.0 µV [-117.8 dBu].
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-20 kHz 20 kHz-20 kHz 15 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-50 kHz 50 kHz-120 kHz 15 Hz-50 kHz 50 kHz-120 kHz 17 hz-50 kHz 18 hz-50 kHz 19 hz-50 kHz 19 hz-50 kHz Resolution Residual Noise 22 Hz-22 kHz BW R-weighted A-weighted A-weighted	±0.03 dB. ±0.10 dB. ±0.10 dB. ±0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, -90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 10 ise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.02 dB. ±0.05 dB. ±0.15 dB. ±0.15 dB. ±0.15 dB. √1.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), plus Per I
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-80 kHz Wideband Amplitude/N Measurement Range Accuracy 115 Hz-50 kHz 15 kHz-20 kHz 15 kHz-20 kHz 15 kHz-20 kHz 16 kHz ref 17 kHz ref 18 Hz-30 kHz 19 kHz-10 kHz 10 kHz-10 kHz 10 kHz-10 kHz 10 kHz-10 kHz 10 kHz-20 kHz 10 kHz 10 kHz-20 kHz 10	±0.03 dB. ±0.10 dB. +0.2 / −0.3 dB (typically < −0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, −90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 10 ise Function <1 µV-160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.05 dB. ±0.15 dB. +0.2 dB / −0.3 dB (typically < −3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading). ≤1.0 µV [−117.8 dBu]. ≤2.0 µV [−111.8 dBu]. ≤6.0 µV [−102.2 dBu]. ≤0.7 µV [−100.9 dBu]. ≤3.5 µV [−100.9 dBu].
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-60 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 kHz-20 kHz 120 kHz-20 kHz 15 kHz-120 kHz 15 kHz-120 kHz 10 kHz-10 kHz Resolution Residual Noise LF -3 dB Optional Filters Detection Residual Noise 22 Hz-22 kHz BW 80 kHz BW 500 kHz BW A-weighted CCIR-QPk Bandpass Amplitude F	±0.03 dB. ±0.10 dB. +0.2 / −0.3 dB (typically < −0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, −90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 0ise Function <1 µV−160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.15 dB. +0.2 dB / −0.3 dB (typically < −3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. ±5% (3-pole), or >500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading). <1.0 µV [−117.8 dBu]. ≤2.0 µV [−117.8 dBu]. ≤3.0 γν [−102.2 dBu]. ≤3.5 µV [−106.9 dBu]. unction
20 Hz-20 kHz 15 Hz-50 kHz 10 Hz-120 kHz 120 kHz-200 kHz Frequency Meter Relat Measurement Range Accuracy Resolution Minimum Input Phase Measurement R Measurement Ranges Accuracy 10 Hz-5 kHz 5 kHz-20 kHz 20 kHz-50 kHz Wideband Amplitude/N Measurement Range Accuracy (1 kHz) Flatness (1 kHz ref) 20 Hz-20 kHz 15 Hz-20 kHz 15 Hz-20 kHz 15 Hz-20 kHz 15 Hz-20 kHz 16 kHz-20 kHz 17 kHz 18 hz-20 kHz 19 kHz-10 kHz 19 kHz-20 kHz 19 kHz-20 kHz 19 kHz-20 kHz 19 kHz-20 kHz 10 kHz 10 kHz-20 kHz 10 kHz 1	±0.03 dB. ±0.10 dB. +0.2 / −0.3 dB (typically < −0.5 dB at 500 kHz). ed 10 Hz-500 kHz. ±0.0006% [±6 PPM]. 6 digits + 0.000244 Hz. 5 mV. elated ±180, −90 / +270, or 0 / +360 deg. ±0.5 deg. ±1 deg. ±2 deg. 0ise Function <1 µV−160 Vrms. ±1.0% [±0.09 dB]. ±0.05 dB. ±0.15 dB. +0.2 dB / −0.3 dB (typically < −3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 500 kHz. ±5% (3-pole), or >500 kHz. up to 7. RMS (□ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 x Pk reading). <1.0 µV [−117.8 dBu]. ≤2.0 µV [−117.8 dBu]. ≤3.0 γν [−102.2 dBu]. ≤3.5 µV [−106.9 dBu]. unction

Bandreject Amplitude	
Tuning Range (f _o)	10 Hz-200 kHz.
Tuning Accuracy Randreiect Response	$\pm 2\%$. typically -3 dB at 0.73 f ₀ & 1.37 f ₀ , -20 dB at f ₀ $\pm 10\%$,
	–40 dB at f _o ±2.5%.
Accuracy THD+N Function	±0.3 dB, 20 Hz–120 kHz (excluding 0.5 f ₀ –2.0 f ₀).
Fundamental Range	10 Hz-200 kHz.
	±0.3 dB, 20 Hz-120 kHz harmonics.
Measurement Bandwidth	40.00.400
LF –3 dB	<a>20, 22, 100, or 400 Hz. 22k, 30k, 80k, or >500 kHz. (Option filter selection also
III -5 0D	affects bandwidth).
Residual THD+N At 1 kHz	\leq (0.00025% + 1.0 μ V) [–112 dB], 22 kHz BW (valid only for analyzer inputs \leq 8.5 Vrms).
20 Hz–20 kHz	$\leq\!(0.0003\%+1.0~\mu\text{V})$ [–110.5 dB], 22 kHz BW, $\leq\!(0.0005\%+2.0~\mu\text{V})$ [–106 dB], 80 kHz BW, $\leq\!(0.0010\%+5.0~\mu\text{V})$ [–100 dB], 500 kHz BW
	$\leq\!\!(0.0040\%$ + 5.0 $\mu\text{V})$ [–88 dB], 500 kHz BW.
Minimum Input	5 mV for specified accuracy, usable to <100 μ V with fixed notch tuning.
IMD Measurements with	<u> </u>
SMPTE (DIN) IMD Func	-
	Any combination of 40 Hz–250 Hz (LF) and 2 kHz–100 kHz (HF) tones, mixed in any ratio from 0:1 to 8:1 (LF:HF).
CCIF and DFD IMD Fun	
	Any combination of equal amplitude tones from 4 kHz–100 kHz spaced 80 Hz–1 kHz.
DIM (TIM) IMD Function	
rest Signal Compatibility	2.96 kHz-3.15 kHz squarewave mixed with 14 kHz-15 kHz sine wave (probe tone).
	ments with option "W&F"
Test Signal Compatibility Normal	2.80 kHz-3.35 kHz
"High-band"	
-	
	ALOG SIGNALS (SYS-2712 and SYS-2722 only)
High Resolution Conve	
A/D Resolution	24-bit sigma-detta. 8 ks/s–108 ks/s variable; or 65.536 ks/s fixed.
	±0.01 dB to 0.45 x SR or 20 kHz, whichever is lower.
	-105 dB for f _s ≤65.536 ks/s, -102 dB for f _s up to 100 ks/s.
High Bandwidth Conve	
A/D Resolution	16 ks/s–200 ks/s variable; or 131.072 ks/s, or 262.144 ks/s fixed.
	$ \begin{array}{l} \pm 0.01 \text{ dB to 20 kHz, } \pm 0.10 \text{ dB to 120 kHz (262.144 ks/s)}. \\ -92 \text{ dB for f}_S \leq & 200 \text{ ks/s, } -90 \text{ dB with f}_S = & 262.144 \text{ ks/s}. \\ \end{array} $
FFT Signal Analyzer with	800 samples to 4 M samples in 15 steps.
	256–32768 samples in binary steps.
Processing	
Amplitude Accuracy	
Averaging	1–4096 averages in binary steps. Averaging is power- based (frequency domain), or synchronous (time domain).
Windows	Ten choices.
DSP Audio Analyzer wi	th "Analyzer" DSP program
Wideband Level/Ampli	
Accuracy (1 kHz)	
High pass Filters	<10 Hz to 45% of Sample Rate [10 Hz–21.6 kHz at 48 ks/s]. <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-pole (4-pole Butterworth or 10-pole elliptic if no other filters are enabled).
	$F_{\rm s}/2$ (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz (6-pole elliptic).
	ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HJ:
Narrow Band Amplifud	Harmonic weighting.
Frequency Range	Harmonic weighting. e <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].
Frequency Range Filter Shape	Harmonic weighting.
Frequency Range Filter Shape THD+N Measurements	Harmonic weighting. e <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. 10-pole, Q=19 (BW = 5.3% of f ₀). <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].
Frequency Range Filter Shape THD+N Measurements Frequency Range	Harmonic weighting. e -(10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s]. 10-pole, Q=19 (BW = 5.3% of f ₀). -(10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s]. -(10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz
Filter Shape	Harmonic weighting. e <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s]. 10-pole, Q=19 (BW = 5.3% of f _o). <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s]. <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth). F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz
Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters Low pass Filters	Harmonic weighting. e <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s], 10-pole, Q=19 (BW = 5.3% of f _o). <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s], 410 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth).

Frequency Measureme	ents	Quasi-Anechoic Acous	stical Tester (MLS)
	. <10 Hz to 47% of Sample Rate [10 Hz–23.0 kHz at 48 ks/s].		Four pink sequences, four white sequences.
	. ±0.01% of reading or 0.0001% of Sample Rate, whichever	Frequency Range	
•	is greater.	Sequence Length	32767 samples or 131071 samples.
Resolution	. 0.003% of reading or 0.0001% of Sample Rate, whichever	Arbitrary and Multiton	e Waveforms ("Arb Wfm")
	is greater.	Signal	Determined by the associated file specified in the panel
Quasi-Anechoic Acous	stical Tester with "MLS" DSP program		drop-down box.
Signals	. Four pink sequences, four white sequences.	Frequency Range	
Frequency Range Frequency Resolution (Max)	. (Sample Rate ÷ 2000) to (Sample Rate ÷ 2). 1.465 Hz at 48.0 ks/s.	Length	256 points–16384 points per channel. Utility is provided to prepare waveform from user specified frequency, ampli- tude, and phase data.
Acquisition Length	. 32767 or 131071 samples.	Fraguency Resolution	Sample Rate ÷ Length [2.93 Hz at 48 ks/s for a waveform
Multitono Audio Analy	zer with "FASTTEST" DSP program	r requeries recondition	16384 points in length].
	. Level vs frequency (Response), Total distortion vs fre-	Maximum Number of Tones	(Length / 2) -1 [8191 for Length = 16384].
	quency, Noise vs frequency, Phase vs frequency, Crosstalk vs frequency, Masking curve.	Dither Probability Distribution	Triangular or rectangular; pseudo random, independent fo
	. (Sample Rate ÷ Transform Length) [1.465 Hz with f _s = 48 ks/s & Transform Length = 32768].		each channel. Flat (white) or Shaped (+6 dB/oct).
Distortion	. ≤–115 dB.	Amplitude Pre-Emphasis Filters	8 bit–24 bit, or OFF.
DIGITAL SIGNAL GEN	ERATOR (SYS-2720 and SYS-2722 only)	Filter Shape	50/15 μs or J17.
		Response Accuracy	±0.02 dB, 10 Hz to 45% of Sample Rate.
nterface Signal Chara Output Formats	. Balanced XLR (AES/EBU per AES3-r1997), Dual	Residual Distortion	≤0.00003% [–130 dB].
	Connector XLR, Unbalanced BNC (SPDIF-EIAJ per IEC-60958), Dual Connector BNC, Optical (Toslink®) per IEC 60958, Connect purpose parallel er Sprigl interface to		YS-2720 and SYS-2722 only)
	IEC-60958, General purpose parallel, or Serial interface to chip via optional PSIA-2722.	Digital Interface Signal	Measurements
Sample Rate ("SR")	w optional i out El El	Input Sample Rate	
Range		Range	00111 000111 6:45"
-	. 28 kHz–200 kHz for fully specified performance; usable from 8 kHz–216 kHz.		28 kHz–200 kHz for fully specified performance; typically <24 kHz kHz–216 kHz.
Optical Format	. 28 kHz–108 kHz for fully specified performance: usable down to 8 kHz. Upper rate is limited by Toslink [®] technol-	•	28 kHz–108 kHz for fully specified performance; usable down to 24 kHz. Upper rate limited by Toslink $^{\circledR}$ technology
	ogy.	Accuracy	(0.00000/ 4. F.: 1) F. O. DDM
Resolution			±(0.0003% + 1 digit) [±3 PPM]. ±(0.0001% + 1 digit) [±1 PPM].
•	. ±0.0002% [±2 PPM], lockable to external reference.	Input Amplitude	±(0.0001% + 1 digit) [±1 PPW].
Output Impedance			0.1/ 40.00.1//59/ . 25\/)
Balanced (XLR)	•		0 Vpp-10.00 Vpp, ±(5% + 25 mV). 0 Vpp-2 5 Vpp, ±(5% + 6 mV).
Balanced (XLR)	. Nominally 75 Ω .	Unbalanced (BNC)	0 Vpp-2.5 Vpp, ±(5% + 6 mV).
Balanced (XLR) Unbalanced (BNC)	. Nominally 75 Ω. . ≤600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC)	
Balanced (XLR) Unbalanced (BNC)	. Nominally 75 Ω ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU
Balanced (XLR)	. Nominally 75 Ω ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth). eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law	Unbalanced (BNC) Optical	0 Vpp=2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input.
Balanced (XLR) Unbalanced (BNC) Residual Jitter Embedded Signal Gene Sine Family Common	. Nominally 75 Ω ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth). eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants)	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds,
Balanced (XLR) Unbalanced (BNC) Residual Jitter	. Nominally 75 Ω ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution.
Balanced (XLR) Unbalanced (BNC)	. Nominally 75 Ω. ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 1.0 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds,
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gen Sine Family Common Frequency Range Frequency Resolution Flatness	. Nominally 75 Ω. ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.
Balanced (XLR)	. Nominally 75 Ω ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth). eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ≤0.00001% [–160 dB].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth,
Balanced (XLR)	. Nominally 75 Ω 6600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ≤0.000001% [–160 dB].	Unbalanced (BNC) Optical	0 Vpp–2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. –12.7 to +115.1 UI [–10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.
Balanced (XLR)	. Nominally 75 Ω 6600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ≤0.000001% [–160 dB].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.
Balanced (XLR) Unbalanced (BNC) Residual Jitter Embedded Signal Gene Sine Family Common Frequency Range Frequency Resolution Flatness Harmonics/purious Products Variable Phase Sine V Phase Range Sine + Offset	. Nominally 75 Ω 6600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ≤0.000001% [–160 dB].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. er with *INTERVU* DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV).
Balanced (XLR)	. Nominally 75 Ω. . ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8-24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ±0.00101% [–160 dB]. Vave . ±180 deg Sine amplitude + offset amplitude ≤100% F _s .	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. eter with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples.
Balanced (XLR)	. Nominally 75 Ω. . ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ≤0.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples.
Balanced (XLR)	. Nominally 75 Ω. . 6600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ≤0.000001% [–160 dB]. Vave . ±180 deg. Sine amplitude + offset amplitude ≤100% F _S . d Sine Burst	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ter with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. turements with "ANALYZER" DSP program tude
Balanced (XLR)	. Nominally 75 Ω. . ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ±0.00001% [–160 dB]. Vave . ±180 deg Sine amplitude + offset amplitude ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,86% samples. eurements with "ANALYZER" DSP program tude −120 dBFs to 0 dBFs (usable to −140 dBFs).
Balanced (XLR)	. Nominally 75 Ω. . ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ±0.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles–65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink [®] receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth. **INTERVU" DSP program** 0 Vpp-10.00 Vpp, ±(10% + 50 mV). 0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. **INTERMENT OF Program** **INTERMENT OF PROGRAM OF TOST OF PROGRAM OF TOST OST OF TOST OST OF TOST OST OST OST OST OST OST OST OST OS
Balanced (XLR)	. Nominally 75 Ω. ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s], . ±0.001 dB, . ±0.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s , d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. et with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with "ANALYZER" DSP program tude −120 dBF _S to 0 dBF _S (usable to −140 dBF _S). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 49 ks/s], ±0.01 dB.
Balanced (XLR)	Nominally 75 Ω. ≤600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 1.0 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ±0.000001% [−160 dB]. Vave ±180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth. er with "INTERVU" DSP program 0 Vpp-10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program tude -120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter
Balanced (XLR)	. Nominally 75 Ω. . 6600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. . Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. . ±0.001 (μ-160 dB]. Vave . ±180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles. . 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. . 40 Hz–500 Hz.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. <600 ps "700 Hz-100 kHz" bandwidth, <1.0 ns "50 Hz-100 kHz" bandwidth. er with "INTERVU" DSP program 0 Vpp-10.00 Vpp, ±(10% + 50 mV). 0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. eurements with "ANALYZER" DSP program tude -120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], ±0.01 dB. ±0.01 dB. 15 Hz-22 kHz (<10 Hz high-pass filter selection).
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), extanton Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ≤0.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of interval cycles minus 1). .≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. et with *INTERVU* DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with *INTERVU* DSP program tude −120 dBF _S to 0 dBF _S (usable to −140 dBF _S). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s], . ±0.001 dB, . 50.000001% [–160 dB], Vave . ±180 deg. . Sine amplitude + [offset amplitude] ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. -12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution. <600 ps "700 Hz-100 kHz" bandwidth, <1.0 ns "50 Hz-100 kHz" bandwidth. er with "INTERVU" DSP program 0 Vpp-10.00 Vpp, ±(10% + 50 mV). 0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. eurements with "ANALYZER" DSP program tude -120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], ±0.01 dB. ±0.01 dB. 15 Hz-22 kHz (<10 Hz high-pass filter selection).
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s], . ±0.001 dB, . 50.000001% [–160 dB], Vave . ±180 deg. . Sine amplitude + [offset amplitude] ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. et with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et werenests with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole) Butterworth, or 10-pole elliptic if no other filters are enabled). F _s /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s], . ±0.001 dB, . 50.000001% [–160 dB], Vave . ±180 deg. . Sine amplitude + [offset amplitude] ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ser with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz (6-pole elliptic).
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 20.001 dB 20.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). . 80 Hz–2.00 kHz. Determined by Sample Rate	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Tosink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. **INTERMENT BEST ST S
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gene Sine Family Common Frequency Range Frequency Range Frequency Range Frequency Range Frequency Range Sine Poffset Offset Amplitude Sine Burst and Shape nterval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Joper Tone Range Cover Tone Range Cover Tone Range M Frequency Range Sine Frequencies Sisions Frequencies	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 20.001 dB 20.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). . 80 Hz–2.00 kHz. Determined by Sample Rate	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. et with *INTERVU* DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with *ANALYZER** DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks)], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fg2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC *A* weighting, per IEC Rec 179, CCIR QPk er CCIR Rec. 468, CCIR RMS per AES17, C-message
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gensine Family Common requency Range Frequency Raspelution I-alaness	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC) Optical	0 Vpp–2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth. et with "INTERVU" DSP program 0 Vpp–10.00 Vpp, ±(10% + 50 mV). 0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz–20.2 kHz at 44.1 ks/s], [10 Hz–22.0 kHz at 44.1 ks/s], [10 Hz–22.0 kHz at 48 ks/s], [10 Hz–44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz–22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCIIT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI.
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 20.000 Hz, . 20.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles–65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.). 80 Hz–2.00 kHz. Determined by Sample Rate . ≤0.000001% [–160 dB].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Lurements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). ≤10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANS-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message rel IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F"
Balanced (XLR)	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ≤0.000001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz. veforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate . ≤0.000001% [–160 dB] 4:1 (squarewave:sinewave).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ser with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. urrements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CICIR Rec. 488, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, H-Harmonic weighting.
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gene Sine Family Common Frequency Range Frequency Range Frequency Range Harmonics/Spurious Products Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape nterval Just On Square Wave Frequency Range SMPTE/DIN Waveform Jupper Tone Range Courle and DFD IMD Wa Center Frequency Range M Frequency Range Special Signals Monotonicity	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), extrator Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . Sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s], . ±0.001 dB, . 50.000001% [–160 dB], Vave . ±180 deg. . Sine amplitude + [offset amplitude] ≤100% F _S . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s], . 40 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.), . 80 Hz–2.00 kHz. Determined by Sample Rate . ≤0.000001% [–160 dB], . 4:1 (squarewave.sinewave).	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. et with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with "ANALYZER" DSP program tude −120 dBF _S to 0 dBF _S (usable to −140 dBF _S). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/S], [10 Hz−22.0 kHz at 48 ks/S], [10 Hz−44.0 kHz at 96 ks/S]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole) at 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). F≥/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC *A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF _S unweighted, −144 dBF _S A-weighted,
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gene Sine Family Common Frequency Range Frequency Range Frequency Range Harmonics/Spurious Products Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape nterval Just On Square Wave Frequency Range SMPTE/DIN Waveform Jupper Tone Range Courle and DFD IMD Wa Center Frequency Range M Frequency Range Special Signals Monotonicity	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. urrements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C−mesper IEEE Std 743-1978, CCIRT per CCITT Rec. 0.41, "F weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF _s cNewighted, −144 dBF _s A-weighted, −144 dBF _s CCIR RMS,
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. . sample Rate + 2 ²³ [0.006 Hz at 48 ks/s]. ±0.001 dB. ±0.000001% [–160 dB]. 4ave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. . 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 4.0 Hz–500 Hz. verforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). 80 Hz–2.00 kHz. Determined by Sample Rate . ≤0.000001% [–160 dB]. 4.1 (squarewave:sinewave). Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.	Unbalanced (BNC) Optical	0 Vpp–2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth. eter with "INTERVU" DSP program 0 Vpp–10.00 Vpp, ±(10% + 50 mV). 0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. eterments with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45,8% of Sample Rate, [10 Hz–20.2 kHz at 44.1 ks/s], [10 Hz–22.0 kHz at 44.1 ks/s], [10 Hz–22.0 kHz at 48 ks/s], [10 Hz–44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz–22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). F _S /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting, the per Res 17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting, and the per Res 17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting. −141 dBF _s unweighted, −140 dBF _s CCIR RMS, −130 dBF _s CCIR RMS, −130 dBF _s CCIR QPK,
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Residual Jitter. Residual Jitter. Sine Family Common Frequency Range Frequency Resolution Sine Burst and Shape Interval Burst Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range Lower Tone Range Lower Tone Range Corlf and DFD IMD Waveform Upper Tone Range Merequency Range	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz" bandwidth, ≤1.0 ns *90 Hz−100 kHz" bandwidth. eter with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1.572.864 samples. urrements with "ANALYZER" DSP program tude −120 dBF ₅ to 0 dBF ₅ (usable to −140 dBF ₆). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s], ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole, 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighted, −140 dBF ₅ A-weighted, −140 dBF ₅ CCIR RMS, −30 dBF ₅ CCIR QPk, −142 dBF ₅ 20 kHz LP,
Balanced (XLR) Unbalanced (BNC) Residual Jitter. Embedded Signal Gen Sine Family Common Frequency Range Frequency Range Frequency Range Harmonics/Spurious Products Variable Phase Sine V Phase Range Sine Burst and Shape Interval Sine Burst and Shape Interval Sine Burst and Shape Interval Spurst Offset Offset Amplitude Sine Burst and Shape Interval Coffer Interval Upper Tone Range Lower Tone Range Lower Tone Range Lower Tone Range Im Frequency Range DIM IMD Waveform Square/Sine Frequencies Disiotrion/Spurious Amplitude Ratio Noise Types Special Signals Monotoricity J-Test Walking Ones	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 3 sample Rate ÷ 2 ²³ [0.006 Hz at 48 ks/s] 4 0.00001% [–160 dB]. Vave . ±180 deg. . Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1). . ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz–500 Hz. veforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.). 80 Hz–2.00 kHz. Determined by Sample Rate . ≤0.000001% [–160 dB] 4:1 (squarewave:sinewave). Produces a maximum amount of data-induced jitter on low-bandwidth transmission links Two sinewaves phased for reinforcement with normal polarity.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤1.0 ns "50 Hz−100 kHz" bandwidth. eter with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. eterments with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). F _s /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Sid 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting. −141 dBF _s unweighted. −140 dBF _s CCIR RMS, −130 dBF _s CCIR RMS, "130 dBF _s Tweighting, −152 dBF _s CCITT,
Balanced (XLR)	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), . 600 ps (700 Hz–100 kHz analyzer bandwidth), . 10 ns (50 Hz–100 kHz analyzer bandwidth), . 10 ns (50 Hz–100 kHz analyzer bandwidth), . 10 hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. . 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. . 20.001 kg. . 20.00001% [–160 dB]. // Isologia 20.00001% [–160 dB]. // Isologia 20.00001% [–160 dB]. // Isologia 20.000001% [–160 dB]. // Isologia 20.000001% [–160 dB]. // Isologia 20.000001% [–160 dB]. // It to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. // It to 1/6 Sample Rate [22.56 kHz at 48 ks/s]. // It to 1/6 Sample Rate [22.56 kHz at 48 ks/s]. // It to 47% of Sample Rate [22.56 kHz at 48 ks/s].	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps *700 Hz−100 kHz* bandwidth, ≤1.0 ns *50 Hz−100 kHz* bandwidth. ≤1.0 ns *50 Hz−100 kHz* bandwidth. er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. urrements with "ANALYZER" DSP program tude −120 dBF ₅ to 0 dBF ₅ (usable to −140 dBF ₅). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s], ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole) 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-LEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec, 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF ₅ cCIR RMS, −130 dBF ₅ CCIR QPk, −142 dBF ₅ 20 kHz LP, −143 dBF ₅ T° weighting, −152 dBF ₅ CCITT, −151 dBF ₅ C Message.
Balanced (XLR)	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. Literements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). ≤10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANS-HEC "A" weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCIR Typer CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCIRT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF _s unweighted, −140 dBF _s A-weighted, −140 dBF _s CCIR RMS, −130 dBF _s (*CIR RMS, −130 dBF _s (*S kHz LP, −143 dBF _s 15 kHz LP, −143 dBF _s 15 kHz LP, −143 dBF _s C Message.
Balanced (XLR)	Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth),	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. et with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 0 Vpp−2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. et with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-HEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF _s unweighted. −144 dBF _s CCIR QPk, −142 dBF _s CCIR QPk, −142 dBF _s CCIR RMS, −130 dBF _s CCIR QPk, −142 dBF _s CCIR QPk, −142 dBF _s CCIR RMS, −130 dBF _s CCIR QPk, −143 dBF _s IS kHz LP, −130 dBF _s CMessage. 1et
Balanced (XLR)	. Nominally 75 Ω. . 600 ps (700 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth), eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 ²³ [0.006 Hz at 48 ks/s] ±0.001 dB ≤0.000001% [–160 dB]. Vave ±180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles. 1 to (number of interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz–500 Hz. Iveforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.). 80 Hz−2.00 kHz. Determined by Sample Rate ≤0.000001% [–160 dB]. 4.1 (squarewave:sinewave). Produces a maximum amount of data-induced jitter on low-bandwidth transmission links. Two sinewaves phased for reinforcement with normal polarity. A single binary zero value "walked" from LSB to MSB. 32-bit resolution when using triangular diffher. Pseudo-random binary states of all bits.	Unbalanced (BNC) Optical	0 Vpp-2.5 Vpp, ±(5% + 6 mV). Displays output voltage of Toslink® receiver (not linearly related to optical input power). Measures propagation from the rear panel AES/EBU Reference Output to the input. −12.7 to +115.1 UI [−10% to +90% of frame] in seconds, 60 ns resolution. ≤600 ps "700 Hz−100 kHz" bandwidth, ≤1.0 ns "50 Hz−100 kHz" bandwidth. ≤er with "INTERVU" DSP program 0 Vpp−10.00 Vpp, ±(10% + 50 mV). 19.66 ms / 1,572,864 samples. Literements with "ANALYZER" DSP program tude −120 dBF _s to 0 dBF _s (usable to −140 dBF _s). 10 Hz to 45.8% of Sample Rate, [10 Hz−20.2 kHz at 44.1 ks/s], [10 Hz−22.0 kHz at 48 ks/s], [10 Hz−44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz−22 kHz (<10 Hz high-pass filter selection). ≤10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANS-HEC "A" weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCIR Typer CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCIRT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. −141 dBF _s unweighted, −140 dBF _s A-weighted, −140 dBF _s CCIR RMS, −130 dBF _s (*CIR RMS, −130 dBF _s (*S kHz LP, −143 dBF _s 15 kHz LP, −143 dBF _s 15 kHz LP, −143 dBF _s C Message.

THD+N Measurements	
Frequency Range	<10 Hz to 47% of Sample Rate,
	[10 Hz-19.9 kHz at 44.1 ks/s],
	[10 Hz–21.6 kHz at 48 ks/s], [10 Hz–43.2 kHz at 96 ks/s].
Residual THD+N	
	<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz
riigii paoo i moro	(4-pole Butterworth).
Low pass Filters	$F_s/2$ (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic).
Weighting Filters	Same as Wideband Level/Amplitude.
Frequency Measureme	
	10 Hz to 47% of Sample Rate,
	[10 Hz–21.0 kHz at 44.1 ks/s],
	[10 Hz-23.0 kHz at 48 ks/s],
	[10 Hz–46.0 kHz at 96 ks/s].
Embedded Audio, FFT	Spectrum Analyzer with "FFT" DSP program
	(48-bit processing)
	800 samples-4 M samples in 15 steps.
Transform Length	256–32768 samples in binary steps.
Windows	
Averaging	1–4096 averages in binary steps. Averaging is power- based (frequency domain), or synchronous (time domain).
Distortion Products	≤–160 dB.
Embedded Audio, Multi	tone Audio Analyzer with "FASTTEST" DSP program
	(48 bit processing)
	512–32768 samples in binary steps.
Transform Length	512–32768 samples in binary steps.
Measurements	Level vs frequency, Total distortion vs frequency, Noise vs frequency, Phase vs frequency, Crosstalk vs frequency, Masking curve.
Frequency Resolution	Sample Rate ÷ 2 ¹⁵ [1.465 Hz with 48 ks/s].
Frequency Correction Range	
Distortion	≤–140 dB.
Embedded Audio, Quas	i-Anechoic Acoustical Tester with "MLS" DSP
0	program
Signals	Four pink sequences and four white sequences, selected by triggering generator MLS setting.
FRONT PANEL AUXILIA	RY SIGNALS
Generator Monitors (all units	s except SYS-2720)
	Channel A; Channel B
Generator Auxiliary Signals	(all units except SYS-2720) Sync Output/ Trig/Gate Input
Analyzer Signal Monitors (a.	
Digital Signal Monitors (SYS	S-2720 and SYS-2722 only)
	Channel 1: Channel 2: Reading 1: Reading 2
REAR PANEL AUXILIAF	RY SIGNALS
Reference Input ("REF	N") Characteristics
Input formats	$28\ kHz\mbox{-}200\ kHz$ AES/EBU, NTSC, PAL, or SECAM video or $8\ kHz\mbox{-}10\ MHz$ square wave.
Reference Output ("REI	F OUT") Characteristics
	AES/EBU (per AES3-r1997).
GENERAL/ENVIRONMI	
Power Requirements	100/120/230/240 Vac (-10%/+6%), 50/60 Hz, 240 VA max
EMC	Complies with 89/336/EEC, CISPR 22 (class B), and FCC

15 subpart J (class B).

34.5 cm [13.6 inches].

34.5 cm [13.5 inches].
Approximately 15.4 kg [34 lbs].
Complies with 73/23/EEC, 93/68/EEC, and EN61010-1 (1990) + Amendment 1 (1992) + Amendment 2 (1995).
Installation Category II, Pollution Degree 2.

Depth

The 2700 Series is available in four models to test analog signals, digital signals or both (dual domain).

SYS-2722 offers analog and digital inputs and outputs, DSP analysis of both digital and internally-converted analog signals, DSP-generated digital and analog signals, and low-distortion, hardware-implemented generation and analysis for analog signals. It is a true dual domain instrument.

SYS-2720 offers digital input and output and DSP generation and analysis of digital signals. It has no analog I/O capabilities.

SYS-2712 offers analog inputs and outputs, DSP analysis of internally-converted analog signals, DSP-generated analog signals, and low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

SYS-2702 offers analog input and output, with low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

The GPIB option adds an IEEE-488 interface to the instrument.

Three major internal analog options may be fitted to all instruments except the digital-only SYS-2720. Note that some BUR- and IMD-type capabilities are already provided in DSP generation and analysis for SYS-2722 and SYS-2712.

The BUR option adds analog-domain generation of burst sine waves with controllable burst duration, interval and amplitude between bursts. It also includes analog-generated square waves to 20 kHz, analog random and pseudorandom white and pink noise, and bandpass-filtered pink noise.

The IMD option tests analog-domain devices for intermodulation distortion to the SMPTE/DIN, CCIF and DIM/TIM standards.

The W&F option measures analog wow & flutter to the IEC/DIN, NAB, JIS, and scrape flutter standards, weighted or unweighted.

A 2700 Series APIB interface connects the instrument to your PC, and is included with all models, except the GPIB option. APIB is available in your choice of an USB, PCIE. PCI or PCMCIA PC card.

Each instrument except the digital-only SYS-2720 can accept up to seven analog filter option modules, selectable from a large assortment of lowpass, bandpass and psophometric weighting filters. Other external accessories include the PSIA-2722 Programmable Serial Interface Adapter for connecting to devices that use non-standard serial interfaces, the SWR-2755 family of high-performance signal switchers/multiplexers and the DCX-127 DC/Ohms/low speed digital logic multifunction module.

2700 SERIES O	RDERING INFORMATION
Models	
SYS-2722	Analog and Digital Input and Output, with DSP. Dual domain, 192k.
SYS-2720	Digital Input and Output, with DSP, 192k.
SYS-2712	Analog Input and Output, with DSP.
SYS-2702	Analog Input and Output.
Options	
	Analog burst sine waves, square waves to 20 kHz, random and pseudorandom white and pink noise signals.
	Analog Intermodulation Distortion to SMPTE/DIN, CCF and DIM/TIM standards.
W&F	Wow & Flutter to IEC/DIN, NAB, JIS and scrape flutter standards, weighted or unweighted.
OPT-2711	Onboard Dolby* Digital (AC-3) signal generation for SYS-2722 and SYS-2720.
EWP2-2700	Two-Year Extended Warranty (adds two more years to the standard three-year warranty included with instrument).
	ns (selected at time of order)
	USB interface adapter w/USB cable, AP2700 software and instructions
	PCIE Interface Card w/AP2700 software.
	PCI Interface Card w/AP2700 software.
	PCMCIA Interface Card w/AP2700 software.
-G	IEEE-488 (GPIB) Interface.
Filters	
	Lowpass filter for AES17 DAC measurements.
OPT-2020	Lowpass filter for DAC measurements.
	Family of analog psophometric noise weighting filters.
FLP-xxx	Family of analog sharp lowpass filters.
FBP-xxx	Family of analog 1/3 octave bandpass filters.
External Access	sories
AUX-0025	Switching Amplifier Measurement Filter.
PSIA-2722	Programmable Serial Interface Adapter.
	12x2 switcher family expandable to 192 channels.
DCX-127	Multifunction module including 4 1/2 digit DC voltmeter/ohmmeter with miscellaneous digital control ports.

Rackmount kit. +Dolby and the double-D symbol are trademarks of Dolby Laboratories.

5750 SW Arctic Drive Beaverton, Oregon 97005 503-627-0832 1-800-231-7350 info@ap.com

